O artigo “Combating small molecule aggregation with machine learning” liderado por Tiago Rodrigues, e resultante de colaboração com Investigadores do Instituto de Medicina Molecular, Universidade de Duke e Insilico Medicine Taiwan, foi publicado, a 13 de setembro de 2021, na revista “Cell Reports Physical Science”.

No presente estudo, uma rede neuronal foi utilizada para detecção de falsos positivos e potenciais artefactos em triagem de pequenas moléculas, como resultado de agregação das mesmas em solução aquosa. Os dados da pesquisa liderada pelo Investigador da FFUL mostram que uma elevada percentagem de pequenas moléculas tem o potencial para agregar em ensaios biológicos (small colloidally aggregating molecules – SCAMs) e que a sua identificação de forma automática consegue ser tão fiável quanto os resultados obtidos a partir do habitual teste de Turing. A abordagem inerente ao estudo comprova que o recurso a ferramentas computacionais tem bastante utilidade numa tarefa crítica no desenvolvimento de medicamentos.

Notícias

  • Etiqueta:

FFUL Torna-se Membro da ORPHEUS

6ª Edição do Projeto ULISSES

Finalistas do MICF Celebram Conclusão do Percurso Académico

China-Portugal Traditional Medicines Forum 2025 Reforça Cooperação Científica entre Portugal e China

Prémio ULisboa – redeSAÚDE 2025

Quatro Aspetos a Considerar ao Escrever um Artigo Científico

EstudantesChinesesHerbalMedicines

Boas-vindas a Estudantes Chineses que Integram o Curso de Medicamentos à Base de Plantas

Professores da FFUL distinguidos no Dia do Farmacêutico 2025

Bolsas de Mérito Gulbenkian 2025

O artigo “Combating small molecule aggregation with machine learning” (link direto para o artigo a adicionar aquando da publicação) liderado por Tiago Rodrigues, e resultante de colaboração com Investigadores do Instituto de Medicina Molecular, Universidade de Duke e Insilico Medicine Taiwan, foi publicado, a 13 de setembro de 2021, na revista “Cell Reports Physical Science”.

No presente estudo, uma rede neuronal foi utilizada para detecção de falsos positivos e potenciais artefactos em triagem de pequenas moléculas, como resultado de agregação das mesmas em solução aquosa. Os dados da pesquisa liderada pelo Investigador da FFUL mostram que uma elevada percentagem de pequenas moléculas tem o potencial para agregar em ensaios biológicos (small colloidally aggregating molecules – SCAMs) e que a sua identificação de forma automática consegue ser tão fiável quanto os resultados obtidos a partir do habitual teste de Turing. A abordagem inerente ao estudo comprova que o recurso a ferramentas computacionais tem bastante utilidade numa tarefa crítica no desenvolvimento de medicamentos.