O artigo “Combating small molecule aggregation with machine learning” liderado por Tiago Rodrigues, e resultante de colaboração com Investigadores do Instituto de Medicina Molecular, Universidade de Duke e Insilico Medicine Taiwan, foi publicado, a 13 de setembro de 2021, na revista “Cell Reports Physical Science”.

No presente estudo, uma rede neuronal foi utilizada para detecção de falsos positivos e potenciais artefactos em triagem de pequenas moléculas, como resultado de agregação das mesmas em solução aquosa. Os dados da pesquisa liderada pelo Investigador da FFUL mostram que uma elevada percentagem de pequenas moléculas tem o potencial para agregar em ensaios biológicos (small colloidally aggregating molecules – SCAMs) e que a sua identificação de forma automática consegue ser tão fiável quanto os resultados obtidos a partir do habitual teste de Turing. A abordagem inerente ao estudo comprova que o recurso a ferramentas computacionais tem bastante utilidade numa tarefa crítica no desenvolvimento de medicamentos.

Notícias

  • Etiqueta:

Universidade de Lisboa Volta a Destacar-se entre as Melhores do Mundo no Ranking de Shanghai

FFUL distingue mérito académico com Prémio de Desempenho Escolar no âmbito do programa IMPULSO Adultos

Candidaturas Concurso Nacional de Acesso ao Ensino Superior 2025/2026

FFUL aprova Regulamento de Mecenato para reforçar excelência académica

Mestrado Integrado em Ciências Farmacêuticas: uma formação com impacto na saúde e na sociedade

Investigação ajuda a esclarecer relação entre doença hepática rara e inflamação intestinal

João Franco Machado distinguido com Prémio Letícia Ribeiro na 33.ª Sabatina de Hematologia

Projeto PACE vence concurso europeu EU4Health

Verão ULisboa 2025

O artigo “Combating small molecule aggregation with machine learning” (link direto para o artigo a adicionar aquando da publicação) liderado por Tiago Rodrigues, e resultante de colaboração com Investigadores do Instituto de Medicina Molecular, Universidade de Duke e Insilico Medicine Taiwan, foi publicado, a 13 de setembro de 2021, na revista “Cell Reports Physical Science”.

No presente estudo, uma rede neuronal foi utilizada para detecção de falsos positivos e potenciais artefactos em triagem de pequenas moléculas, como resultado de agregação das mesmas em solução aquosa. Os dados da pesquisa liderada pelo Investigador da FFUL mostram que uma elevada percentagem de pequenas moléculas tem o potencial para agregar em ensaios biológicos (small colloidally aggregating molecules – SCAMs) e que a sua identificação de forma automática consegue ser tão fiável quanto os resultados obtidos a partir do habitual teste de Turing. A abordagem inerente ao estudo comprova que o recurso a ferramentas computacionais tem bastante utilidade numa tarefa crítica no desenvolvimento de medicamentos.