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Abstract

Epilepsy requires the long-term administration of antiepileptic drugs (AEDs), and thus, we must consider the effects of prenatal
AED exposure on fetus when treating female patients of child bearing age. Large prospective clinical researches in humans have
demonstrated the following: (1) prenatal exposure to valproic acid (VPA), carbamazepine, and phenobarbital increases the risk
of congenital malformations in a dose-dependent manner and (2) prenatal exposure to VPA increases the risk of higher brain func-
tion impairments including intellectual disabilities and autistic spectrum disorders in the offspring. Furthermore, basic researches in
animals have shown that prenatal exposure to specific AEDs causes microscopic structural abnormalities in the fetal brain. Specif-
ically, prenatal exposure to VPA has been reported to inhibit the differentiation of neural progenitor cells during the early to middle
phases of neuronogenesis, leading to increased number of projection neurons in the superficial layers of postnatal neocortices in
mice. It is indispensable to prescribe AEDs that are associated with lower risk of congenital malformations and impairment of
higher brain functions as well as to administer them at requisite minimum doses.
� 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Epilepsy is the most common chronic neurological
condition, with a prevalence of 4–10 people per 1000
population [1,2]. Treatment for epilepsy generally
requires the long-term administration of antiepileptic
drugs (AEDs). Since most AEDs pass through the pla-
centa at their specific concentrations [3], consideration
of the maternal and fetal risks associated with uncon-
trolled seizures against the potential undesired effects
from exposure to AEDs is indispensable when treating
pregnant epileptic mothers [4,5]. These undesired effects
include miscarriages, stillbirths, intrauterine growth
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retardation (IUGR), congenital malformations, and
neurodevelopmental disabilities [6]. According to a
report from the International Registry of Antiepileptic
Drugs in Pregnancy (EURAP), an international registry
that covers countries in Europe, Asia, Oceania, Latin
America, and Africa, the most frequently administered
AEDs during pregnancy are lamotrigine (LTG), carba-
mazepine (CBZ), valproic acid (VPA), and levetiracetam
(LEV), accounting for approximately 80% of all AED
monotherapies for epileptic mothers [7]. In North Amer-
ican countries, topiramate (TPM) is also frequently used
in addition to the aforementioned AEDs [8].

In the late 1990s, several independent research groups
established registries for epileptic mothers in an attempt
to analyze large numbers of pregnancy outcomes after
exposure to AEDs in a prospective manner, and are
lsevier B.V. All rights reserved.
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Fig. 1. Incidence of major congenital malformations after prenatal
exposure to valproic acid (VPA), carbamazepine (CBZ), phenobarbital
(PB), phenytoin (PHT), zonisamide (ZNS), lamotrigine (LTG), leve-
tiracetam (LEV), topiramate (TPM), and reference. Data reported
from the International Registry of Antiepileptic Drugs in Pregnancy
(EURAP), closed circles [4]; United Kingdom Epilepsy and Pregnancy
Register (UKEPR), closed squares [2,19]; North American AED
Pregnancy Registry (NAAPR), closed triangles [8]; Australian Register
of Antiepileptic Drugs in Pregnancy (APR), open circles [20]; and the
Medical Birth Registry of Norway (MBRN), open squares [23].
Numbers shown to the right are the size of each study population.
Note that the reference is the results of pregnancy without AED
exposure, although the presence of epilepsy in the mother differs
among each research group. #, dose-dependency reported.
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now reporting long-term outcomes [9–11]. Furthermore,
prenatal and early postnatal AED exposure is also an
important research target in the area of basic biological
science, since such exposure may lead to structural and/
or functional impairments, referred to as ‘‘developmen-
tal origin of health and disease (DOHaD)” [12–15].

In this article, we shall summarize our current knowl-
edge of prenatal and early postnatal AED exposure,
from both clinical and basic research aspects. Moreover,
we aim to propose future research questions that may
arise based on current knowledge.

2. Observations from clinical registries

Epilepsy and pregnancy registries include national
registries (e.g., United Kingdom Epilepsy and Preg-
nancy Register [UKEPR]; Australian Register of
Antiepileptic Drugs in Pregnancy [APR]), regional reg-
istries (e.g., North American AED Pregnancy Registry
[NAAPR]; Neurodevelopmental Effects of Antiepileptic
Drugs [NEAD] study group), and broadly international
registries (e.g., EURAP). In this section, we shall discuss
the outcomes of AED-exposed pregnancy based on
these clinical researches, focusing especially on major
congenital malformations (MCMs) and neurodevelop-
mental disorders. Additionally, we shall discuss early
postnatal exposure to AEDs through breastfeeding,
which is another important issue during the peripartum
period.

2.1. Major congenital malformations

Prenatal exposure to older-generation AEDs (i.e.,
VPA, CBZ, phenobarbital (PB), and phenytoin (PHT))
has been widely accepted to increase the risk of MCMs
to 4–10% compared with 1–5% in the general population
[4,16–18] (Fig. 1). The incidence is higher when AEDs
are administered (1) during the first trimester [16], (2)
at high-dose [2,4,8,19], and 3) in combination with other
AEDs [4,16,20].

The most common major congenital malformations
in AED-exposed offspring are heart defects, neural tube
defects, hypospadias, clubfoot, and cleft lip or palate
[2,16]. Among these MCMs, neural tube defects are
especially associated with prenatal exposure to VPA
(1–5% of exposed offspring) and CBZ (0.5–1.0% of
exposed offspring) [4,16].

A dose-dependency of the incidence of MCMs has
been observed for prenatal exposure to VPA [2,4,8,19],
CBZ [2,4,19] and PB [4]. The incidence is particularly
high (23%) when VPA is administered at 1500 mg/day
or higher-doses [4,8]. Thus, the International League
Against Epilepsy recommends avoiding the administra-
tion of VPA to women of childbearing age [21].

There is limited data with regard to zonisamide
(ZNS) that is mainly used in Japan and the United
Please cite this article in press as: Fujimura K et al. Adverse effects of pre
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States. The NAAPR has reported that ZNS did not
increase the risk for MCMs, although the study popula-
tion was small and the results, thus, require future inves-
tigation [8].

Among the newer-generation AEDs (i.e., LTG, LEV,
and TPM), LTG has been the most widely investigated.
Several studies have reported that the MCM incidence
after prenatal exposure to LTG is equivalent to that in
the general population when administered at low-dose
(less than 200–300 mg/day) [4,19,22]. These MCM inci-
dence were reported to increase to 4–5% when LTG is
administered at higher-doses (200–300 mg/day or
higher) [2,4], though another study reported no dose-
dependent increase [22].
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Meanwhile, results from research on prenatal expo-
sure to LEV and TPM are still being accumulated. To
date, the results show no increase of MCM incidence
after LEV exposure [2,8,20,23]. In contrast, the results
for TPM are a matter of controversy. Some results have
shown an increased MCM incidence including micro-
cephaly and hypospadias, and an increased risk for
small for gestational age birth, whereas other results
have shown no increase of MCM incidence [2,8,20,23].

As for polytherapy, VPA has been reported to
increase the incidence of MCM when combined with
other AEDs [2,22]. Additionally, a report from Aus-
tralia has pointed out that TPM increased MCM risk
when used in polytherapy [20].

2.2. Neurodevelopmental effects

The production of neurons that become distributed in
the neocortices, the center of cognitive function, starts at
approximately 2–4 months of gestation in humans. The
produced neurons migrate through the embryonic cere-
bral wall and attain their laminar position during 3–
5 months of gestation. Synaptic development subse-
quently takes place from 5 months of gestation and con-
tinues after birth [24]. Thus, the fetuses of AED-treated
mothers are continuously exposed to AEDs during the
period of embryonic neuronal development.

Recent research has provided certain evidence of the
neurodevelopmental outcomes of children who are pre-
natally exposed to AEDs (Table 1). Prenatal exposure to
VPA has been reported to decrease the intelligence quo-
tient (IQ) scores of children in a dose-dependent man-
ner, compared with that of children who were exposed
to CBZ, PHT, LTG, LEV, and TPM [25–27]. Further-
more, the risk for neurodevelopmental disorders was
reported to increase in children prenatally exposed to
VPA, both for monotherapy (12.0%) and polytherapy
including VPA (15.0%), compared with that in AED-
unexposed children (1.9%), with autistic spectrum disor-
ders (ASDs) being the most frequent diagnosis [28]. A
population-based study in Denmark also reported that
the risk for ASDs was higher for the children prenatally
exposed to VPA (4.2%), compared with that of un-
exposed children (2.4%) born from epileptic mothers
[29]. In contrast, studies in the UK reported that prena-
tal exposure to CBZ, LTG, and LEV did not increase
the risks for neurodevelopment disorders or impaired
language skills in the children [28,30], though another
study group has pointed out adverse development scores
in CBZ and LTG [31].

2.3. Effects of breastfeeding from AED-treated mothers

Breastfeeding provides nutrition, immunological pro-
tection, and mother-and-child attachment [32,33],
though it may lead to the postnatal AED exposure of
Please cite this article in press as: Fujimura K et al. Adverse effects of pren
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infants if their mothers are taking AEDs. VPA, CBZ,
PB, and PHT are reported to transfer into breast milk
at concentrations less than 50% of that in the maternal
serum [3,34]. Conversely, LEV has been reported to
transfer in a higher concentration, approximately equal
to that in the maternal serum [3,35–37]. However, the
serum concentration of LEV in infants was reported to
be approximately 13% of that in the mother, despite
the high concentration in breast milk [36].

Adverse symptoms in infants who were exposed to
AEDs via breastfeeding include hypertonia, restlessness,
irritability, and abnormal sleep patterns, though it is dif-
ficult to clinically distinguish such symptoms from that
of AED withdrawal syndrome [3]. CBZ has been
reported to cause hepatic dysfunction and LTG has
been reported to cause severe apnea and hepatic dys-
function in infants when exposed via breastfeeding,
though the data remain inconclusive [3,38].

On the other hand, the beneficial effects of breastfeed-
ing have been reported on the long-term neurodevelop-
mental outcome of children of AED-treated mothers.
The IQ scores were reportedly higher in breastfed chil-
dren than in non-breastfed children at the ages of
6 years, when both groups were born from mothers tak-
ing VPA, CBZ, PHT, or LTG [39]. This positive effect of
breastfeeding was predominant in the children of VPA-
treated mothers, whose mean IQ was 12 points higher in
the breastfed children than that in the non-breastfed
children. Moreover, another group reported that breast-
feeding decreased the risk for autistic traits in infants
born from mothers taking AEDs including VPA, CBZ,
and LTG, though the beneficial effect was not present
at the age of 3 years [40].

Although the present knowledge does not provide a
conclusion as to whether breastfeeding should be recom-
mended for AED-treated mothers, we advocate that
mothers should be informed of the known benefits as
well as the potential risks of breastfeeding during the
administration of AEDs.

3. Research in animal models and in vitro

Fetal exposure to AEDs during pregnancy may alter
the in utero environment during the earliest stages of
fetal development. Especially when these environmental
changes cause heritable changes to DNA or chromatin
structures that affect the gene expression profiles not
based on the nucleotide sequences, they are called ‘‘epi-
genetic” changes [41]. The epigenetic mechanisms
include DNA methylation, histone acetylation, and non-
coding RNA, which are reported to affect cell prolifera-
tion/differentiation characteristics in developing
mammalian tissues [42–45]. Indeed, (1) prenatal expo-
sure to VPA, CBZ, LTG, and LEV has been reported
to decrease the level of DNA methylation in cord blood
cells in human neonates [46] and (2) VPA is known to
atal and early postnatal exposure to antiepileptic drugs: Validation
.1016/j.braindev.2017.03.026
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Table 1
Neurodevelopmental effects of prenatal AED exposure.

Outcome measure Age
(years)

Valproic acid Carbamazepine Phenytoin Lamotrigine Levetiracetam Topiramate References

Meador [25] IQ and specific
cognitive outcomes

2, 3,
4.5,
and 6

Dose-dependent IQ
decline, impaired verbal/
nonverbal ability,
memory, and executive
function

No negative effects
on IQ

No
negative
effects on
IQ

No negative effects
on IQ

– – No reference group

Baker [26] IQ and verbal/
nonverbal/spatial
abilities

6 IQ decline and impaired
verbal/nonverbal/spatial
ability in high-dose
exposure (>800 mg/day)
Verbal ability was
impaired regardless of
dose

No impairment of
IQ
Reduced verbal
ability

– No impairment of
IQ or specific
cognitive ability

– – Children born to women
without epilepsy

Bromley
[27]

IQ and specific
cognitive outcomes

5–9 Dose-dependent IQ
decline, impaired verbal/
nonverbal/expressive
language ability

– – – No negative
effects on IQ
or specific
cognitive
ability, no
dose-
dependence

No negative
effects on IQ
or specific
cognitive
ability, no
dose-
dependence

Children born to women
with epilepsy without
AED treatment

Bromley
[28]

Diagnosis of
neurodevelopmental
disorders

6 Increased risk for
neurodevelopmental
disorders, ASD being the
most frequent diagnosis

No increased risks
for
neurodevelopmental
disorders

– No increased risks
for
neurodevelopmental
disorders

– – Children born to women
without epilepsy

Christensen
[29]

Diagnosis of ASD
and childhood
autism

4–14 Increased risk for ASD
and childhood autism

No increase of ASD
or childhood autism

– No increase of ASD
or childhood autism

– – Children born from
women without AED
treatment and a restricted
cohort of children born to
women with epilepsy not
treated with valproic acid

Shallcross
[30]

Motor development
and language skills

3–4.5 Impaired gross motor
skill,
comprehension/expressive
language ability

– – – No
impairment
of
development
or language
skills

– Children born to women
without epilepsy

Veiby [31] Motor development,
language skills, and
traits for
neurodevelopmental
disorders

1.5
and 3

Impaired gross motor
skills at age 1.5
Impaired sentence skills at
age 3

Impaired fine motor
skills and social skills
at age 1.5
Increased aggressive
symptoms at age 3

– Impaired sentence
skills and increased
autistic traits at age 3

– – Children of parents
without epilepsy

AED, Antiepileptic drug; ASD, autistic spectrum disorder; IQ, intelligence quotient.
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inhibit the activities of histone deacetylases (HDACs)
which regulate the transcription of genes by altering
the chromatin structure [47–49].

In this section, we shall discuss the current knowledge
regarding exposure to AEDs during embryogenesis
based on basic biological research, including both their
epigenetic and non-epigenetic effects. We will focus on
the most frequently administered AEDs during preg-
nancy, i.e., VPA, CBZ, LTG, and LEV [7] (Table 2).

3.1. VPA

Similar to observations in humans, a series of previ-
ous studies have reported that prenatal exposure to
VPA causes autistic behaviors in rodent offspring. Such
autistic behaviors include decreased social interactions,
decreased sensitivity to pain, increased sensitivity to
nonpainful stimuli, repetitive/stereotypic-like activity,
increased anxiety, abnormally high and long lasting fear
memories, and changes in ultrasonic vocalizations of the
pups [50,51]. A relative increase in the ratio of excita-
tory/inhibitory synaptic function has been proposed to
be the pathogenetic mechanism [52].

As for structural anomalies within the central ner-
vous system, prenatal exposure to VPA is known to
induce neural tube defects [53], neuronal migration
defects leading to the impairment of neocortical lamina-
tion [54], increased weight of the whole brain [55],
increased density of prefrontal neocortical neurons
Table 2
Structural and neurofunctional effects of prenatal AED exposure on embryo

Basic studies in rodents

Structural Neurofunctional

Valproic acid Neural tube defects [53]
Apoptosis in embryonic cerebral
wall [57]
Increased neocortical neurons
[59,61]
Increased expression of cell cycle
regulatory proteins in NPCs [61]

Autistic behaviors

Carbamazepine Decreased neuron number in
hippocampi and neocortices [71]
MCM risk is CI [67–70]

No impairment of l
or memory functio

Lamotrigine Neocortical and hippocampal
malformations due to impaired
neuronal migration [72]
Increased MCM, IUGR, and
lethality of embryos in extremely
high-dose exposure [74]

Hyperactive behav
to decreased GABA
receptor [73]

Levetiracetam No induction of neocortical or
hippocampal malformation [72]

No negative effects
physical or cognitiv
functions [75]

The table presents a summary of structural and neurofunctional effects of pr
clinical studies. Note that the extrapolation of results from animal studies to
variation in the effects of prenatal AED exposure. NPCs, Neural progenitor
IUGR, intrauterine growth retardation.

Please cite this article in press as: Fujimura K et al. Adverse effects of pren
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[56], apoptosis in the developing embryonic cerebral
wall [57], and reduced adult neuronogenesis in the hip-
pocampi [58].

It is important to note that these previous observa-
tions may not represent the effects of prenatal exposure
to VPA in humans, since VPA was administered to preg-
nant rodents at high-dose (generally 400–500 mg/kg/-
dose; approximately twice the median effective dose
(ED50), see Table 1), in a single or in multiple injections
during the middle phase of embryogenesis, that is, usu-
ally on embryonic day 11 (E11) or E12, despite the short
half-life of VPA in rodents (1–2 h) [53]. Thus, in more
recent analyses, VPA was administrated to pregnant
rodents at lower dosages for longer periods so as to
reproduce the in utero environment in human epileptic
mothers taking VPA.

Daily intraperitoneal (i.p.) injections of VPA to
mothers (20 or 100 mg/kg/day, from E12.5 to postnatal
day 23 (P23)) increased the thickness of the frontal neo-
cortices by increasing the number of neurons in VPA-
exposed rats, compared with that in controls [59]. Fur-
thermore, we reported that the low-dose peroral admin-
istration (p.o.) of VPA throughout the whole pregnancy
period (0.4% VPA water solution given as drinking
water from E1 until birth) resulted in maternal plasma
concentrations of 20–40 mg/ml, or approximately one-
fifth of the level that increases the seizure threshold in
mice (TIC50) [60]; see Table 3, and increased the number
of projection neurons as well as the neocortical thickness
s and offspring.

Clinical studies in humans

Structural Neurofunctional

[50–52] Dose-dependent increase of
MCM incidence [2,4,8,19,20]
Thickening of neocortices
[62]

Dose-dependent decrease
of IQ scores [25–27]
Increased risk of neurode-
velopmental impairment
[28–31]

earning
ns [71]

Increased MCM incidence,
possibly dose-dependent
[2,4,19]

CI [28,29,31]

ior due
-A

No increase of MCM
incidence in low-dose
administration (<200–
300 mg/day). Dose-
dependency is CI [2,4,19,22]

CI [25,26,28,29,31]

on
e

No increase of MCM
incidence [2,8,20,23]

No impairment of IQ
scores or
neurodevelopmental skills
[27,30]

enatal AED exposure on embryos and offspring observed in basic and
humans requires sufficient evaluation because of potential interspecies
cells; MCM, major congenital malformation; CI, controversial issue;
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Table 3
Anticonvulsant activity of AEDs against seizure induction by electrical or chemical stimulation in mice.

Compound ED50 (mg/kg) TIC50 (mg/ml)

6 Hz MES PTZ PTZ

Valproic acid [60,79,80] 126 235–272 120–220 120–150
Carbamazepine [79,80] 47.9 7.81–8.81 >50
Lamotrigine [80] >60 7.47 >40
Levetiracetam [80] 19.4 >500 >500

ED50, median effective dose; TIC50, plasma AED concentration which increases the threshold for seizures by 50%; 6 Hz, seizure induction by 6 Hz
stimulation; MES, maximal electroshock; PTZ, picrotoxin. Administration of each AED was conducted intraperitoneally.
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in the superficial layers of the somatosensory area in the
postnatal mice [61]. Additionally, we reported that pre-
natal exposure to VPA more than doubled the number
of neurons born during the terminal phase of neurono-
genesis due to an increase of NPCs in the ventricular
zone of the developing cerebral wall, which was caused
by a decreased quiescence (Q) fraction of the NPCs dur-
ing the early to middle phases of the neuronogenetic per-
iod [61]. This result was consistent with a previous
clinical study in humans in which prenatal exposure to
VPA increased the neocortical thickness in children
[62], and an in vitro study in which VPA exposure
increased the number of superficial neocortical neurons
born from cultured murine embryonic stem cells [63].

Furthermore, our results showed that prenatal expo-
sure to VPA increased the amount of cell cycle regula-
tory proteins in the nuclei of NPCs in a nonspecific
manner, including cyclin D1, cyclin dependent kinase
(cdk) 2, cdk4, and cdk inhibitor p27Kip1 [61]. These dis-
organized increases in protein expression were suggested
to be a result of the HDAC inhibitory activity of VPA,
since the amount of total acetylated histone H3 protein
was increased in the cerebral walls of the VPA-exposed
embryos. However, VPA has various biological func-
tions in addition to its action as an HDAC inhibitor:
VPA increases the concentration of gamma aminobu-
tyric acid (GABA), prolongs the recovery of voltage-
activated Na+ channels from inactivation, reduces T-
type Ca2+ currents [64], activates the glycogen synthase
kinase-3b/b-catenin pathway [55], activates the extracel-
lular signal-regulated kinase pathway [65], and decreases
protein kinase C [66]. Thus, the observed phenotypes
may be a mixture of these various effects overall.

3.2. CBZ

Several studies have reported that prenatal exposure
to CBZ increased the incidence of MCMs in offspring,
including cleft palate, enlarged cerebral ventricles, club-
foot, and skeletal defects in mice [67,68]. Additionally,
prenatal exposure to CBZ has been reported to increase
the risks for edema, cardiac ventricular septal defect,
gastroschisis, right hydronephrosis, and omphalocele
Please cite this article in press as: Fujimura K et al. Adverse effects of pre
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in a dose-dependent manner, in rat embryos [69]. In con-
trast, another study has reported no evidence of terato-
genicity in mice prenatally exposed to CBZ [70].

Recent research has reported that prenatal exposure
to CBZ decreased the number of neurons in the hip-
pocampi and neocortices of postnatal mice [71]. In this
study, female mice were given pellets that included
3.5 g/kg of CBZ or normal pellets as a control through-
out the pregnancy period. The numbers of neurons were
decreased in the hippocampi and the neocortices by 50%
and 25%, respectively, in the CBZ-exposed postnatal
mice, as compared with controls. However, the CBZ-
exposed postnatal mice did not show any impairment
in learning or memory functions [71]. Since the underly-
ing mechanisms of the reported dysgenesis of the brain
induced by prenatal exposure to CBZ have not yet been
elucidated and CBZ is the second most frequently
administered AED as a monotherapy during pregnancy
in humans, further studies are strongly recommended.

3.3. LTG

Prenatal exposure to LTG (5–20 mg/kg/day, i.p.,
from E14 to E19) has been reported to dose-
dependently increase the number of neuron-depleted
areas in the neocortices and the hippocampi of rat off-
spring, which was a result of impaired neuronal migra-
tion [72]. Furthermore, another group reported that
prenatal to early postnatal exposure to LTG (11–
46 mg/kg/day, p.o., from E3 to P11) showed hyperactive
behavior and decreased GABA-A receptor expression in
the neocortices, compared with controls in rats [73].
Additionally, LTG administration at higher-doses (50–
200 mg/kg/day, i.p., on E7 or E8) reportedly increased
the incidence of maternal mortality, abortion, embry-
onic lethality, MCMs, and IUGR, compared with con-
trols [74]. The observed malformations included
maxillary-mandibular hypoplasia, exencephaly, cleft
palate, median facial cleft, urogenital anomalies, and
caudal regression. However, the administration dosage
used in this study was extremely high, compared with
the ED50 dose; thus, it may not be applicable to evaluat-
ing the risks of prenatal exposure to LTG (Table 3).
natal and early postnatal exposure to antiepileptic drugs: Validation
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3.4. LEV

Currently, prenatal and early postnatal LEV expo-
sure has only been tested in a few animal studies, none
of which have shown abnormalities in cognitive function
or in the structure of the brain. Prenatal exposure to
LEV (50 mg/kg/day, i.p., from E14 to E19) did not
increase the number of neuron depleted areas in the neo-
cortices [72]. Additionally, LEV (25–100 mg/kg/day, p.
o., from E1 to E18) was reported to have only a tran-
sient effect on reflex maturation and no impact on phys-
ical or cognitive functions in rat offspring [75]. Postnatal
exposure to LEV (250–1000 mg/kg/day, i.p., on P7) did
not induce neuronal cell death in the neocortices, the
hypothalamus, or the hippocampi in rats [76]. Addition-
ally, patch-clamp recordings of medial striatal spiny
neurons showed that postnatal exposure to LEV
(400 mg/kg/dose, i.p., on P7) did not disrupt synaptic
development in rats [77]. Since LEV is a potential candi-
date for first-line AED for epileptic pregnant mothers,
future evaluation of its safety is highly expected.

4. Conclusion

Recent clinical research has revealed that several
AEDs indeed affect embryonic development, and some
observations from animal studies have indicated the
possible pathogenic mechanisms of these phenotypes
observed in humans. However, we should not apply
the results of animal studies to humans without suffi-
cient evaluation. The short life spans, large litter sizes,
and different patterns of AED metabolism among spe-
cies often make animal models poor proxies for human
embryos [78]. At least, we can say that different types of
AEDs may have unique effects on the development of
the brain, of which their underlying mechanisms and
their impact on postnatal higher brain functions would
be our future study questions.

Again, the administration of AEDs is an indispens-
able treatment for adult patients with epilepsy, and such
treatment is necessary throughout life for more than half
of all patients. Thus, we should be aware of the risks and
benefits of taking AEDs, especially during pregnancy.
However, there are certain circumstances in which the
prescription of high-risk AEDs such as VPA is inevita-
ble, for instance, in the treatment of juvenile myoclonic
epilepsy. In such cases, the risks for MCMs and higher
brain function impairments can be lowered by (1)
decreasing the administration dosage with careful vali-
dation of serum concentration, (2) prescribing
extended-release tablets, and (3) avoiding the use of
multiple AEDs in combination. Furthermore, several
newer-generation AEDs have been developed in recent
years and we, therefore, expect that safe and effective
AEDs will be available in the near future.
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