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Adverse drug reactions (ADRs) are a major public health concern, causing over 100,000 fatalities in the
United States every year with an annual cost of $136 billion. Early detection and accurate prediction of
ADRs is thus vital for drug development and patient safety. Multiple scientific disciplines, namely
pharmacology, pharmacovigilance, and pharmacoinformatics, have been addressing the ADR problem
from different perspectives. With the same goal of improving drug safety, this article summarizes and
links the research efforts in the multiple disciplines into a single framework from comprehensive under-
standing of the interactions between drugs and biological system and the identification of genetic and
phenotypic predispositions of patients susceptible to higher ADR risks and finally to the current state
of implementation of medication-related decision support systems. We start by describing available com-
putational resources for building drug-target interaction networks with biological annotations, which
provides a fundamental knowledge for ADR prediction. Databases are classified by functions to help users
in selection. Post-marketing surveillance is then introduced where data-driven approach can not only
enhance the prediction accuracy of ADRs but also enables the discovery of genetic and phenotypic risk
factors of ADRs. Understanding genetic risk factors for ADR requires well organized patient genetics
information and analysis by pharmacogenomic approaches. Finally, current state of clinical decision
support systems is presented and described how clinicians can be assisted with the integrated
knowledgebase to minimize the risk of ADR. This review ends with a discussion of existing challenges
in each of disciplines with potential solutions and future directions.
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1. Introduction

Clinical benefits of prescription drugs do not only depend on
their efficacy in treating diseases but also their safety and
tolerability in patients. Each dispensed prescription carries its
own risks for causing adverse drug reactions (ADRs), ranging
the full spectrum of severity from cosmetic to severe morbidity
and mortality [1,2]. ADR is estimated to cause over 2 million
hospitalizations and more than 100,000 fatalities each year in
the United States alone [3,4], with an estimated annual cost of
$136 billion [5,6].

Between 1976 and 2005, severe ADRs have caused 28 drugs to
be withdrawn from the United States market [7], with the top
drug-induced toxicities being hepatotoxicity (21%, 6), nephrotoxi-
city (7%, 2), cardiotoxicity (7%, 2), torsades (21%, 6), and rhabdomy-
olysis (7%, 2). For example, Vioxx is approved by the Food and Drug
Fig. 1. Overview of the effort in ADR prevention from kno
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Administration (FDA) in 1999 and gained widespread acceptance
among physicians (prescribed to over 80 million people world-
wide) in treating patients with arthritis and other conditions
causing chronic or acute pain. Five years later, it was pulled off
the market due to significantly increased risk of heart attack and
stroke, becoming one of the most widely used drugs ever to be
withdrawn [8,9].

Thus, early identification as well as precise prediction of ADRs is
crucial for drug discovery and development and patient safety.
ADRs are often classified as Type A and Type B where Type A
reactions are typically dose-related, expressing an extended
therapeutic effect of a drug, for example, hypotension with anti-
hypertensive therapy and bleeding events with warfarin; Type B
reactions are ‘idiosyncratic’, occurring only in susceptible individ-
uals [10]. The etiology of variable drug responses is multifactorial,
including both genetic (e.g., severe haemolytic anaemia can occur
wledgebase construction to clinical implementation.
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in glucose-6-phosphate dehydrogenase (G6PD) deficient patients
after the ingestion of fava beans and the use of certain anti-
malaria drugs of sulfonamides [11]) and phenotypic (e.g., age, race,
comorbidities) risk factors. Better understanding of the ADR risk
factors, particularly for Type B reactions, could significantly
improve the drug development process and decrease the health-
care cost through precision medication delivery to the right
patients with the right dose at the right time.

Patient safety has always been a top priority of regulatory
agencies and healthcare industries. The US FDA has established
multiple departments and checkpoint systems such as the Center
for Drug Evaluation and Research (CDER), the New Drug
Application (NDA), and Post-marketing Surveillance (PMS) pro-
gram to assess and monitor drug safety risks at each stage of the
drug discovery and development process and throughout its
market life. In the healthcare sector, hospitals have implemented
electronic medical records (EMRs) with computerized medication-
related clinical decision support systems to improve patient safety
and quality of care.

This paper summarizes the current research efforts in prevent-
ing ADR from knowledge discovery through a comprehensive
understanding of the interactions between drugs and biological
systems (Section 2) and the identification of genetic and pheno-
typic predispositions of patients susceptible to higher ADR risks
(Section 3) to knowledge delivery in healthcare systems (Section 4)
through implementation of medication-related decision support
systems (Fig. 1). Pharmacology, pharmacovigilance, and pharma-
coinformatics seem to be unrelated scientific disciplines, but they
share a core goal of improving patient medication safety. Coopera-
tion between the disciplines will accelerate knowledge discovery
and knowledge translation to clinical practice to achieve real
impact in healthcare.
2. Deriving pharmacological knowledge of ADR from drug-
target interactions

Many risk factors may contribute to ADRs, and one of the most
important factors is the interaction between drug and its targets,
which include the therapeutic targets and/or other cellular
macro-molecules [12]. Drugs function through interacting with
molecular targets. Although designed to bind specific targets,
unexpected binding of drugs to other proteins, namely off-target
effects, is also frequently observed in drug discovery and clinical
practice, resulting in ADRs [13]. Moreover, besides the desired
pathway, inhibition of a target may also affect other pathways that
the target is involved in, and generate ADRs [14]. As a result,
studying drug-target interaction networks can provide better
understanding of the polypharmacology of drugs (Figs. 2 and 3A).
Fig. 2. Drug-target interaction network model. Square stands for the drug as the
center of this network. Nodes represents target molecules with red means
up-regulated and green means down-regulated. Edges are the physical interactions
or other biological associations. Solid-line means direct interaction with the drug,
while dashed-line means interaction is indirect. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Key components of drug-target interaction networks. (A) Examples of key
types of single interactions: their visualization and sources. Red means a target is
up-regulated while green means down-regulated. (B) Interaction-module
examples: (1) Hub drug with multiple targets, which is easier to have ADRs; (2)
Hub target with multiple downstream targets. If a drug uses it as a target, the
chance of having ADRs will increase; (3) Bottleneck target is the bridge to connect
functional modules. Using it as a drug target can disturb the whole function.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Please cite this article in press as: Y. Tan et al., Methods (2016), http://dx.doi.org/10.1016/j.ymeth.2016.07.023
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Information extracted from drug-target interaction networks can
be translated into the knowledge of ADRs. Henceforth, it will
facilitate the process of drug discovery in the early stage, reduce
the cost of in vitro and in vivo experiments, and ultimately benefit
patients who are under various treatments.

2.1. Existing databases for building drug-target interactions

The most common drug targets are proteins, however, some
nucleic acids can also serve as drug targets [15]. Advances
in whole genome sequencing and the mass spectrometry
characterizations of human proteome provide new opportunities
and make the identification of drug-target interactions more
achievable.

Currently, several databases of interaction networks of chemi-
cals and proteins are available (Table 1). For instance, DrugBank
is the most comprehensive bioinformatics/cheminformatics data-
base that comprises detailed drug and target information [16]. It
is applied in drug target discovery, drug design, docking, metabo-
lism prediction, and interaction prediction. STITCH (v4.0), which
stands for ‘‘search tool for interactions of chemicals”, is another
commonly used database. It integrates information about struc-
tures of targets, binding experiments and drug–target relation-
ships, which are derived from experiments, databases and
literature. It is an informative resource for the interactions of
drug-like chemicals and proteins [17,18]. ChEMBL [19] is also a
Table 1
Databases used in building drug-target interaction network with adverse drug reaction (A

Database Website

Databases of primary data source
Molecular
ChEMBL https://www.ebi.ac.uk/chembl/
MATADOR http://matador.embl.de
PDSP http://pdsp.med.unc.edu/
IntAct http://www.ebi.ac.uk/intact/
PDB http://www.rcsb.org/pdb/
Gene Expression
GEO https://www.ncbi.nlm.nih.gov/geo/
Pathways and gene annotation
KEGG http://www.genome.jp/kegg/
GO http://geneontology.org/page/go-database
ADR databases
FAERS https://open.fda.gov/data/faers/
EMA http://www.ema.europa.eu
JAPIC http://www.japic.or.jp/
VAERS https://vaers.hhs.gov/

Protein-protein interaction databases
TTD http://bidd.nus.edu.sg/group/cjttd/
BRENDA http://www.brenda-enzymes.org/
GLIDA http://pharminfo.pharm.kyoto-u.ac.jp/servic
Pfam http://pfam.xfam.org/
STRING http://string-db.org/
MINT http://mint.bio.uniroma2.it/mint/
HAPPI http://bio.informatics.iupui.edu/HAPPI/

Gene expression profile network databases
ConnectivityMap http://www.broadinstitute.org/cmap/
MANTRA http://mantra.tigem.it

Well-integrated interaction network databases (including ADR information)
DrugBank http://www.drugbank.ca/
STITCH http://stitch.embl.de/
PubChem http://pubchem.ncbi.nlm.nih.gov/
SuperTarget http://bioinf-apache.charite.de/supertarget_
SIDER http://sideeffects.embl.de/
My-DTome www.my-dtome.lu
DR.PRODIS http://cssb.biology.gatech.edu/dr.prodis/
PharmGKB https://www.pharmgkb.org/

Methods used to extract information: E: Experiment result; D: Databases integration; M
Methods used to construct network: B: Bipartite Network; PM: Pattern-Matching algori
NA: not available.

Please cite this article in press as: Y. Tan et al., Methods (2016), http://dx.doi.o
well-established database for getting compound information. It
contains binding, functional and absorption, distribution, metabo-
lism, and excretion – toxicity (ADMET) information for millions of
drug-like bioactive compounds and thousands of biologics.
Additionally, PubChem Compound Database [20] covers validated
chemical depiction information, with specialization in pre-cluster
and cross-reference by identity and similarity. Other similar
drug-drug interaction (DDI) databases include Manually Annotated
Targets and Drugs Online Resource (MATADOR) [21], Psychoactive
Drug Screening Program (PDSP) [22] and IntAct [23]. Methods used
for constructing these databases are summarized in Table 1, and
most databases integrate information from others.

Since gene expression profiling has been routinely performed
due to the significant price-drop, some databases, such as
ConnectivityMap (cmap v02) [24] and Mode of Action by NeTwoRk
Analysis (MANTRA) [25], exploit the gene expression changes upon
treatment to build the drug-target network and group compounds
with similar profile together. At present, a microarray platform,
called L1000 technology, examines only 1000 genes to represent
the whole transcriptome, which reduces the price per sample to
only a few dollars. With the low cost, tons of compounds are under
investigation, and the data is saved in cmap by the LINCS project
[26]. Using numerous associations between compounds and
expression profiles, researchers can potentially build a more
comprehensive drug-target interaction network with indirect
edges, which were previously neglected.
DR) knowledge.

Version Methods

v21 E, M,
NA M,
NA E,
NA E, M
NA E,

NA E,

NA M
NA M

NA M
NA M
NA M
NA M

v4.3 D, E
NA D, E, M

es/glida/ v2.04 D, E, M
v29.0 D, M, HMM
v10 D, PM
NA D, E, M
v2.0 D, O

v02 E, PM
NA E, PM

v4.3 D, M, P, T
v4.0 D, M, T
NA D, E, P, B

v2/ v2 D, M
v4.1 D, M, T
NA D, O
NA D, FINDSITEcomb

NA D, M, T

: Manual curation; P: Protein annotation; T: Text mining.
thms; HMM: Hidden Markov Models; O: Other network methods.
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Meanwhile, because proteins are the main drug targets,
protein-protein interaction (PPI) is an important component of
the drug-target network. Thus many protein databases are excel-
lent sources of drug-target interactions. The Protein Data Bank
(PDB) [27] is an archive for 3D structures of proteins, nucleic acid,
and complex assemblies, and commonly used for docking. Thera-
peutic Target Database (TTD) [28] focuses on therapeutic proteins
and nucleic acids as drug targets. BRENDA [29] is an enzyme data-
base, which is considered as the database of drug target candidates
because a lot of drugs target the enzymes. Moreover, Guanosine-
binding Protein Coupled Receptor (GPCR) Ligand Database (GLIDA)
[30] is an example of databases that specialize in protein super-
families with a key biological function. Other PPI databases include
Pfam [31], Human Annotated and Predicted Protein Interaction
(HAPPI) [32], STRING (v10) [33], and MINT [34].

2.2. Predicting drug-target interaction network with biological
annotations

Information necessary for predicting drug-target interactions
network can be derived from validated experimental data, litera-
ture search and computational modeling [35]. First, a large amount
of data (e.g., from high through-put screening and cell line profil-
ing) is available in public domain. Literature text mining of the
Medline database with optimized algorithm can investigate vari-
ous drug-target interaction problems [36]. Another widely used
method is docking simulations, which are based on in silico model-
ing of compound–protein interactions [37]. LaBute et al. suggested
that using high performance computers, molecular docking
provided reliable prediction of interaction network of a drug
candidate, which can be used to identify clinically important ADRs
[38]. In their study, ADRs were predicted by combining the results
of molecular docking (VinaLC) and the known ADR information
from DrugBank and SIDER [39], based on L1-regularized logistic
regression models. However, the drawback of this approach is
the demand of long computation time and the low accuracy of
molecular docking. Structures of targets alone provide a poor
docking platform, and only high-resolution drug-target complex
structures can be used in precise docking. However, the high
quality complex structures are inadequate, particularly for GPCRs,
the most common drug targets. Skolnick’s group developed
threading/structure-based FINDSITE-based approaches, which is
feasible for searching the entire proteomes against many com-
pounds [40]. This approach does not require known interactions
for a drug or protein target nor high-resolution protein structures.
It is more efficient than traditional docking methods, and most
importantly, has better accuracy for ranking drug-target interac-
tions than traditional docking methods. It is worth to mention that,
most drug-target interaction network are predicted by various
mathematical models or machine learning methods. However,
although the number of validated interactions is increasing, there
is no reliable negative control. As a matter of fact, it is becoming
critical to build a systematic method of screening drug and target
with no interaction at all [41].

Despite the fact that drug-target interaction network can be
predicted, to derive further biological insights, studies must
include biological databases that contain information about path-
ways, ontology terms and expression profiles. For example, Kyoto
Encyclopedia of Genes and Genomes (KEGG) [42] is a extensively
used database including information of genes, pathways and dis-
eases, etc. The Gene Ontology (GO) [43] database annotates genes
with GO terms, which are used to group target genes by functional
similarities. Similar to MATADOR, but with extensive information
such as pathways, ontologies and Cyp450s, SuperTarget [21]
integrates drug related annotations for medical indication. Another
valuable database is Gene expression Omnibus (GEO), a repository
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for high-throughput data (microarray and next-generation
sequencing) on functional genomic, which can be used for preclin-
ical validation of drug candidates [44].

2.3. Predicting ADR from drug-target interaction network

Although drug-target interaction network can be used to gener-
ate multi-dimensional knowledge such as novel drug target
discovery or drug repositioning, this paper focuses on ADR
prediction. Human body is a complex system, in which a myriad
of biological interactions entangle into a network. Actually, hitting
one node in the network by a drug can cause diverse reactions
including ADRs. Due to the development of computational-
biomedical technologies (analytic methods, computational power
and related databases, etc.), researchers can now extend existing
knowledge to represent this network by adding edges between
nodes and to predict more and more reactions. Generally, ADR
are caused by the interaction of undesired targets. This is likely
to happen when a drug is the hub drug or it targets at a hub target
(Fig. 3B).

To reliably predict ADR, it requires well-annotated databases to
connect drugs to side effects. One of the key players is SIDER [45]
(v4.1), a database containing marketed medicines and their
recorded ADRs. It is characterized by the information of side effect
frequency, classifications of drug and side effects. Other govern-
mental side-effect databases include FDA Adverse Event Reporting
System (FAERS) [46], European Medicines Agency (EMA) [47] and
the Japan Pharmaceutical Information Center (JAPIC) [48] database.
Tatonetti et al. [49] reported an improved performance of their
off-label and DDI side-effect database (OFFSIDES and TWOSIDES),
which is reported to be superior to SIDER. Using the
databases, they predicted adverse cardiovascular events from
co-prescription of thiazides and selective serotonin reuptake inhi-
bitors (SSRIs). Moreover, there are specialized drug-ADR databases
such as Vaccine Adverse Event Reporting System (VAERS) [50], a
specialized database focusing on vaccine ADRs, and Myocardial
Infarction Drug-Target Interactome network (My-DTome) [47], a
database specifically aimed at myocardial infarction (MI). Recently,
well-integrated database across multiple –omics has attracted
much interest. DR.PRODIS integrated DRugome, PROteome,
DISeasome into a webserver, providing querying service as well
as virtual target screening of new compounds with side-effect pre-
dictions [51]. The Pharmacogenetics Knowledge Base (PharmGKB)
[52] is another example of integrated database with genomic,
phenotypic and clinical information collected from ongoing
pharmacogenetic studies. It has a knowledge pyramid showing
what information of different levels is and how it is collected and
to be used.

Based on these resources and the structure of the interaction
network, researchers can predict ADRs by examining (1) structure
similarities of compounds and proteins; (2) drug-drug interaction
(DDI). The first class of methods is mainly used for predicting ADRs
of new drugs according to the existing ADRs of drugs, while the
second class requires comprehensive drug-target interaction
networks. Nowadays, the second class of methods is attracting
more attentions because of the popularity of ‘‘cocktail” therapies
(co-prescriptions).

In the first class of methods, by using SIDER and drug structure
information, Liu et al. [53] developed a causality analysis model
based on structure learning (CASTLE) to identify contributing fac-
tors of ADRs, which was critical because it showed causal relations.
They also showed that the CASTLE model performed better than
baseline support vector machine (SVM) trained on full and ran-
domly selected feature set and against LASSO logistic regression.
Furthermore, by integrating the phenotypic characteristics of
drugs and ADRs from SIDER, the same group successfully predicted
rg/10.1016/j.ymeth.2016.07.023
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ADRs associated with the withdrawal of rofecoxib and cerivastatin.
Huang and coworkers [54] reported a feature selection approach
using both the drug structure and protein-protein interaction
(PPI) information, as well as SIDER that accurately predicted ADRs
of 25 out of 27 withdrawn drugs. In the myocardial infarction field,
with the help of My-DTome, cardiovascular ADRs of non-
cardiovascular drugs have been identified, and some of them have
been investigated by in vitro/vivo animal models and even post-
marketing studies [47,55].

In the second class of methods, Hennessy and Flockhart [56]
raised attentions and questions about ADRs caused by drug-drug
interaction. Generally, if co-dosed drugs have no interaction, the
side effects will be just their own ones. However, if drugs have
synergistic and/or antagonistic effects, using them together may
cause serious, undesirable effects, and one of the reasons is the
change of dose effect.

Although most ADR prediction studies used drug-target
networks, there are also reports that did not use any of them.
Kim et al. [57] presented an early example of a cohort-oriented
study on drug-disease association using only their record of treat-
ments for chronic heart failure. Recently, by using commercial
databases utilized by hospitals, Cami et al. [58] applied predictive
pharmacosafety networks (PPNs) in predicting likely unknown
ADRs of known drugs through building drug-ADR association
directly across medical domains. This method showed low
sensitivity but high specificity, which is a reliable way to identify
unknown ADRs of existing drugs.
3. Enhancing ADR knowledge with post-marketing surveillance

Pharmaceutical manufacturers of a new drug, in their own and
in FDA-regulated pre-marketing trials, typically conduct testing on
no more than a few thousands of volunteers, many of whom are
healthier than the patients receiving the drug post-approval. For
any potentially rare ADR with the occurrence rate less than 0.1%,
it will be extremely difficult for the pre-marketing trials to identify
the related ADRs [59]. Moreover, the highest risk patients (e.g., the
most ill or debilitated) are normally excluded from these trials
[60]. For example, elderly patients may have multiple comorbidi-
ties and receive more than 10 concomitant medications, creating
unique situations not covered by pre-market testing. Therefore,
whenever drug prescribing patterns diverge from those used in
pre-marketing clinical trials, severe ADRs may occur, making
post-marketing surveillance a critical part of the drug safety
research.
3.1. Detecting drug-event associations – data driven approach

Pharmacovigilance effort worldwide have largely focused on
data-driven surveillance by creating spontaneous reporting
systems (SRSs) to collect post-market drug safety concerns from
clinicians, patients, and pharmaceutical companies. The collected
spontaneous reports are then mined for new ADR signals. The most
established ADR detection methods aim to quantify the degree to
which a drug-and-ADR pair co-occurs ‘‘disproportionally” in the
SRS reports compared with what would be expected if there was
no association [61–76]. Early pharmacovigilance efforts have
cross-correlated (‘‘data mined”) the Food and Drug Administration
(FDA) and World Health Organization (WHO) adverse event data-
bases looking for unanticipated patterns [65,77–81], yielding a
number of previously unrecognized adverse drug events. However,
significant limitations of the SRSs are widely known which include
highly biased populations selected for representation, lack of
adequate control groups, and biased nature of selecting events to
report [82,83].
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With the recent FDA’s Sentinel Initiative, an active surveillance
system congressionally mandated to begin in 2012 to mine 100
million electronic medical records (EMRs) for drug safety signals,
pharmacovigilance has begun to shift its focus toward EMR-
based drug safety surveillance [84–95]. The advantage of using
EMRs to detect iatrogenic harm of drugs retrospectively is well
recognized. It is more objective and allows active surveillance
and discovery of novel ADR signals and is not dependent on
self-reporting. There exists a number of studies that aim to
detect/discover ADRs using either structured [84,85,88–90,94–96]
or unstructured EMRs [91,92,97–99], demonstrating the promise of
EMR for studying drug effects. Methods employed are mostly based
on statistical and machine learning algorithms such as odds ratio
[90,100], Bayesian network model [101], and decision tree model
[92]. However, these models can merely narrow down the range of
associations (correlated relations) between a drug and condition
without validation of their causal relations. In fact, indirect
association stemming from another event, e.g., confounder, is a major
issue in pharmacovigilance. Since relationships between medica-
tions, symptoms, and diseases are rarely mentioned in EMRs,
computationally detected ADR signals from EMRs are likely to be
confounded by co-medication, indication, comorbidity, or any of
the combinations. It is thus critical for observational studies utilizing
EMRs to identify and remove possible confounders. Furthermore, it is
important to note that the models described in this section are not
intended to examine ADR risk factors.

3.2. Identifying genetic risk factors of ADR – pharmacogenomic
approach

Genetic predisposition is one important factor contributing to
ADR. Classen et al. [102] estimated 50% of ADRs are likely to be
related to genetic factors. To examine genetic risk factors of ADR
in the post-marketing phase, various pharmacogenetics or phar-
macogenomics (abbreviated here as PGx) approaches have been
developed to link inherited differences to variable drug responses.

3.2.1. Candidate gene approach
A number of important pharmacogenetics associations were

discovered using the candidate gene approach and were proven
to be useful in clinical practice. One successful example is the
discovery that a relative or absolute deficiency of thiopurine
s-methyltransferase (TPMT) can increase the risk of severe bone
marrow suppression [103], leading to TPMT level checking prior
to the initiation of azathioprine in clinics. A more recent example
is achieving more accurate and safe dosing of warfarin by following
genotyping at CYP2C9 and VKORC1 genes [104,105]. Furthermore,
abacavir hypersensitivity has been linked to the human leukocyte
antigen (HLA) region where the association of HLA-B*57:01 and
abacavir hypersensitivity is perhaps the best example of the
translation of PGx findings into clinical practice [106].

Although the candidate gene approach have resulted in impor-
tant PGx findings, many biomarkers discovered through candidate
gene studies have failed to be replicated, thus hindering the overall
success in clinical implementation. There are many reasons for this
which includes poor sample size and poor phenotyping strategies.
Another major limitation is that the candidate gene approach
assumes that we have a complete understanding of the underlying
mechanisms of how a drug acts in terms of both efficacy and safety,
which is not true.

3.2.2. Genome-wide association studies
In contrast to the candidate gene approach above, genome-wide

association studies (GWAS) is a hypothesis free approach where all
genes can be scanned for common genetic variations. GWAS is
particularly valuable in identifying novel mechanisms beyond the
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current known mechanisms that cause drug response variability
and detecting small effects. These studies compare alleles at
thousands of loci of individuals having different phenotypes.
GWAS typically looks for associations between single-nucleotide
polymorphisms (SNPs) and a disease status or trait through
regression analyses. If a SNP is more frequent in people with a trait,
the variant is said to be associated with the trait. The SNPs with the
most significant associations identified at the ‘discovery phase’ are
then retested in a new sample in the ‘replication phase’ [107]. An
example of the use of GWAS in PGx research is the assessment of
the variation in cytochrome P450 2C19 genotype associated
antiplatelet effect with clopidogrel [108].

The main issue with GWAS is also the sample size. For most
ADR studies, since genetic risk factors of ADRs tend to be drug
specific, the number of cases available is small, which limits the
power to detect significant effects, particularly for rare ADRs. A
potential approach in combating the problem is meta-analysis of
multiple GWAS undertaken by different groups on the same
phenotype. However, meta-analysis using imputed genotypic data
across different platforms may be limited by the bias introduced
into such derived data due to the weaknesses of various imputa-
tion methods [109,110].
3.2.3. Next-generation sequencing
A relative new PGx approach is to utilize next-generation

sequencing, a high-throughput parallel-sequencing technology
that can produce thousands or millions of sequences concurrently,
enabling examination of the whole genome at a low cost. As the
cost continues to fall, it will enable individuals with rare or novel
pharmacogenomic variants to be discovered, which would have
been undetectable previously using common variant analysis
technologies [111]. For example, 250 variants in 231 ADME
(Absorption, Distribution, Metabolism, and Excretion) related
genes in an individual were identified by conventional screening
assays, compared to 17,733 variants identified using next-
generation sequencing, and of which 861 variants were thought
to be functionally significant [111,112].

Next-generation sequencing technologies have already made a
significant impact on the identification of drug response predictors.
In cancer research, sequencing of somatic genome has resulted in
the identification of driver mutations that can be treated by drug.
In addition, sequencing of germline genome may enable the iden-
tification of sub-phenotypes of complex diseases with variable
responses to different drugs [113]. There are already examples of
rare variants identified to be associated with serious ADRs, for
example, association between butyrylcholinesterase deficiency
and prolonged apnea from the treatment with suxamethonium.
Furthermore, Behr and Roden [114] found at least 10% of drug-
induced torsades de pointes episodes may be due to rare mutations
in the congenital long QT syndrome genes.
3.2.4. Comparison of the approaches
Each of the abovementioned approaches has its own advantages

and application scenarios that each is most suitable for. The candi-
date gene approach makes use of known targets with small search-
ing range, thus it is generally cheaper than the other approaches.
However, it assumes these candidate genes are dominant, which
neglects the connection among genes. On the other hand, GWAS
focus on known SNP locations, which is much more systematic
than the candidate gene approach but it is still challenging to iden-
tify unknown rare variants. Finally, next-generation sequencing is
the most de novo approach that can find variants in unexpected
or even unknown regions. However, its biggest drawback is cost
and its requirement for intensive data analysis effort.
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3.3. Phenotypic risk factors of ADR

In addition to the genetic risk factors contributing to ADR,
response to a drug also depends partly on the patient’s phenotypic
characteristics, e.g., differences in metabolism due to age, sex, race,
or hepatic/renal insufficiency, coexistence of other disorders, and
use of other drugs. This section discusses some important pheno-
typic risk factors of ADR that can be discovered through data
analysis.

3.3.1. Age
Patient age has been found to be an independent risk factor for

ADRs because a variety of age-related physiological changes can
affect the pharmacokinetic and pharmacodynamics of drugs
[115]. Infants and very young children are at much higher risk
for ADRs because their metabolism is not fully developed yet. For
example, the antibiotic chloramphenicol given to newborns can
cause a serious and often fatal reaction called gray baby syndrome
due to their inability to metabolize and eliminate the drug [116].
Moreover, if infants and young children are given another
antibiotic tetracycline during their teeth forming period, it may
permanently discolor their teeth enamel [117].

Older adults are also at high risk of having ADRs. Elderly are
more likely to have complex diseases, thus may be taking multiple
drugs to manage their health. The risk of adverse drug interactions
increases exponentially with each new drug added to an individ-
ual’s existing regime [118]. Also, as people age, their renal and liver
reserve will decrease, thus increasing the risk for delayed renal and
hepatic clearance of drugs [119].

3.3.2. Kidney and liver function
Kidney and liver are two principal organs to eliminate drugs

and their metabolites from the human body. Since drugs are
mostly lipid soluble, they must undergo biotransformation to more
polar metabolites before it can be efficiently removed from the
blood circulation by renal excretory mechanisms. Renal dysfunc-
tion not only alters the renal excretion mechanism but also leads
to modifications in the distribution, transport, and biotransforma-
tion of drugs, and affects the pharmacodynamics actions of drugs
[120]. Similarly, hepatic dysfunction also has complex effects on
drug clearance, biotransformation, and pharmacokinetics. It may
alter intestinal absorption, plasma protein binding, hepatic extrac-
tion ratio, liver blood flow, biliary excretion, and etc., resulting in
increased levels of bioavailable drug [121]. This alteration may
cause normal drug doses to have toxic effects. For example, sensi-
tivity of opioids and sedatives is often enhanced in patients with
chronic liver disease where a small dose intake may precipitate
encephalopathy.

Therefore, patients with acute or chronic kidney/liver disease
must have drug dosage adjustment. For patients with renal impair-
ment, it is a standard of practice to adjust dosages of drugs accord-
ing to creatinine clearance or glomerular filtration rate (GFR). For
patients with hepatic impairment, there are no general rules for
adjusting drug dosages because levels and effects of individual
drug do not correlate well with the type of liver injury or severity.
Current guidelines recommend that before administering drugs
that are largely cleared by hepatic mechanisms, the drugs’
potential therapeutic benefits must be carefully counterbalanced
with their risk of serious ADRs [121]. If these drugs are required
by patients with severe hepatic insufficiency, it is recommended
that they should be started at a low dose and subsequently titrated
to its desired therapeutic effect.

3.3.3. Comorbidity and polypharmacy
Many studies have also found that the risk of ADR increases

with the disease burden and the number of medications a patient
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is concurrently on [122]. In other words, ADRs can be caused by
drug-disease interaction and drug-drug interaction/polypharmacy.
For instance, hypertensive patients co-administering drugs that
can cause sodium retention will increase their blood pressure,
resulting in serious ADRs. Other examples include the use of
aspirin and beta adrenoceptor blockers may worsen asthma, the
use of oral contraceptives can exacerbate thrombo-embolic disor-
ders [123], and cyclo-oxygenase has been linked to death in cardiac
patients [124].

Another important risk factor for serious ADR is drug-drug
interaction. For the past 15 years, the percentage of Americans
consuming multiple medications at the same time has increased
by 20%, with more than 76% of Americans over 60-years-old taking
multiple drugs at the same time [125]. Drug-drug interaction can
increase the magnitude of drug toxicities [126]. Specifically, one
drug may alter the absorption, distribution, metabolism or
elimination of another drug, which may result in higher serum
concentration of the agents and lead to excessive response or
toxicity. For example, cerivastatin caused 31 cases of fatal rhab-
domyolysis prior to its withdrawal in June 2001; the combination
cerivastatin – gemfibrozil was implicated in 12 of the 31 deaths
[127] because gemfibrozil caused elevated blood levels of the statin
resulting in a higher risk of myopathy and rhabdomyolysis. DDIs
may also cause altered toxicities. For example, lipid-lowering agent
pravastatin and the antidepressant paroxetine taken together can
lead to unexpected increases in blood glucose levels, while no such
effect is observed when either drug is administered alone [128].
4. ADR prevention in healthcare with clinical decision support
systems

To influence real world medical decisions, knowledge discov-
ered and validated from previous sections must to be translated
to clinical practice. In effort to prevent adverse drug events, most
hospitals have implemented clinical decision support systems
(CDSS) based on the accumulated knowledge in their computerized
physician order entry (CPOE). The CDSSs encompass a variety of
computerized tools aimed at reducing medication error, especially
at the prescribing stage, which include computerized reminders
and guidance regarding drug selection, dosage, interaction, and
allergies. Functionality of the current CDSS varies across hospitals,
providing basic or advanced guidance to the prescribers.
4.1. Basic medication-related decision support

Basic medication-related decision support systems typically
include drug-allergy, drug-drug interaction and basic dosage
checking.
4.1.1. Drug-allergy checking
The drug-allergy checking functionality in CDSS will present an

alert to the provider if a patient has an electronic documentation of
a specific drug allergy and the medication is ordered. Although
extremely valuable, current drug-allergy checking is inconsistent
across applications and major shortcomings make accurate allergy
checking nearly impossible; for example, in some CPOE applica-
tions, allergens and allergic reactions are not recorded as struc-
tured or coded entry. In addition, many applications do not
distinguish between drug allergy and drug sensitivity, generating
a large amount of irrelevant alerts that is highly disruptive of the
clinical workflow [129]. For example, a drug-allergy alert is
triggered on a cephalosporin order for patients allergic to only
penicillin. A major reason behind the over-alerting is due to
inadequate drug prescribing knowledgebase. Another reason that
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hinders optimal drug-allergy alerting is the poor quality of allergy
data recorded in the EMR.

4.1.2. Basic dosing guidance
Medications with narrow margins of safety, such as oncologic

agents, sedatives, and narcotics, are sensitive to dosing mistakes.
CDSS can improve medication dosing through multiple mecha-
nisms. One simple method is to provide the clinician a list of
patient-appropriate dosing parameters for each medication with
default selection of the most appropriate initial dose [130] or
present to clinicians a list of complete order sentences (e.g., include
dose, dose form, route, etc.) for selection [131]. A more complex
method is to review each medication order through algorithmic
analysis and only alert clinicians when reasonable dosing parame-
ters have been exceeded [132].

4.1.3. Drug-drug interaction checking
Automated drug-drug interaction checking has been imple-

mented at point-of-care based on knowledgebase supplied by
many sources including commercial vendors. Despite its promise
to reduce harm to patients, it can generate large numbers of
clinically insignificant alerts that clinicians typically ignore. The
override rate for high-severity drug-drug interaction alerts can be
as high as 89% [133]. One major reason behind the large overridden
rate is again inadequate knowledgebase that include minor
interactions of low clinical relevance, and is not treated differently
from the clinical significant ones. Another related reason is that the
available drug-drug interaction knowledge is still very limited,
especially lacking information on susceptible sub-populations.

4.2. Advanced medication-related decision support

Advanced medication-related decision support in preventing
adverse drug events include advanced dosing guidance, drug-
associated lab testing, and drug-disease interaction checking.

4.2.1. Advanced dosing guidance
As described in Section 3, pediatric and geriatric populations

and patients with renal or hepatic insufficiency are especially
susceptible to serious ADRs and require appropriate dosing adjust-
ments. However, the basic dose checking CDSS sometimes assume
that patients are non-geriatric adults and have normal renal and
hepatic functions. Thus, advanced medication dosing decision
support tools have been implemented to consider the complex
patient variations [134,135]. Many factors may affect the safe
dosage for a particular patient, which include patient characteris-
tics such as age, weight, height, comorbidities, and physiologic
status (e.g., renal and hepatic function), indication of the drug,
concurrent medications, and patient’s previous response to drug.

4.2.2. Advanced guidance for medication-associated laboratory testing
A number of drug classes including anticoagulants, digoxin, and

antiepileptic drugs have narrow therapeutic window, thus requir-
ing close monitoring of drug levels and possible adverse effects
with laboratory tests prior to the initial administration as well as
at regular intervals during treatment. For certain medications like
digoxin and antiepileptic drugs, the monitoring is primarily for
tracking drug levels. For other medications like angiotensin-
converting enzyme inhibitors that can raise serum potassium and
creatinine levels, laboratory monitoring is mainly for tracking
any possible adverse effects. Finally, medications such as
aminoglycoside would require monitoring of both drug levels
and physiological status, i.e., creatinine levels. Implementation of
reminders in CPOE can help physicians comply with medication
monitoring recommendations. Three important prerequisites exist
for implementing a robust medication-lab reminder: (1) patient’s
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previous laboratory results must be readily accessible; (2) must
inform providers when a patient is due or overdue for a monitoring
test; (3) monitoring recommendations should be evidence-based.

4.2.3. Advanced drug-disease interaction checking
There exist many contraindications that clinicians should avoid

during prescribing based on patients’ pre-existing comorbidities.
For example, non-selective beta-blocking drugs should not be
prescribed to patients with asthma as it may adversely affect
pulmonary function, and many drugs are contraindicated with
myasthenia gravis. CDSS can assist physicians to avoid contraindi-
cated medication by alerting them about patients’ underlying
conditions. To enable such checking, one must have an adequate
knowledgebase of contraindications, in which many vendors and
healthcare organizations have already developed from package
inserts. Contraindication checking also requires patients’ diagnoses
and conditions to be accurately and comprehensively documented
as coded entry in EMR.

5. Challenges and future research directions

5.1. Challenges in predicting ADRs using drug-target interaction
networks

– There are dozens of databases providing information on
different levels (Table 1). Part of the information is complemen-
tary to each other, but the rest is not. For example, DrugBank,
DR.PRODIS, SIDER, STITCH and SuperTarget all have predicted
ADRs for drugs, some of the predictions are concordant, some
are complementary, but some are rated differently or even
conflictive. However, depending on the credible level, the num-
ber of predicted ADRs for drugs in databases can be huge and
experimental validations on all these predictions are not feasi-
ble. One of the solutions is to generate a database on the top
of them to clean up all these predictions and give a score to
represent the reliability of each prediction (by counting the
time a prediction show up in different databases or using more
comprehensive statistical models). The predictions with low
score or with conflicts must be highlighted by question mark
until experimental validation is done. However, this activity
requires a huge collaboration and investment from the drug
development community, but the benefit is not that obvious,
which make it challenging to come true.

– The reliability of databases is different because of the various
resolutions of the data. For instance, a reported ADR from a
patient in the SRS should be more reliable than an indication
from an EMR record. Also, how representative a validation on
animal model or cell-lines can be? Therefore, researchers
should consider this factor when they are doing predictions
using multiple data-sources.

– Balancing sensitivity and specificity is always a problem of
mathematical models. Here, it is the question of how to find
the meaningful targets from numerous interactions in the net-
work. Besides of refining models, narrowing down the search
space to sub-categories by introducing appropriate factors
may be beneficial.

5.2. Future of predicting ADRs using drug-target interaction networks

– It is known that lots of drugs (especial antibiotics) will change
the microbiome in a human body. Recently, studies reported
the associations between the microbiome in gut and intestinal
and chronic diseases [136,137]. However, the association
between drug and microbiome is not well considered in the
ADR prediction models yet. As the knowledge among drug,
microbiome and disease increases, using drug-microbiome
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interaction network in ADR prediction will become important,
especially in the field of preventive medicine.

– Recently, deep-learning has made some breakthrough and
AlphaGo beat Lee Sedol in the board game Go. Also, IBMWaston
has shown a good example of using deep-learning in the
medical filed. Deep-learning can solve more complex problems
compared to regular machine learning methods. And the struc-
ture of drug-target interaction networks is similar to the neural
network, which fits the concept of deep-learning well.
Therefore, using deep-learning to study the network and predict
ADRs will be a trend.

5.3. Challenges in pharmacovigilance

– Although EMR has become a mainstream data resource for
pharmacovigilance, there are a number of challenges in using
it for such studies. Clinical data are highly heterogeneous, and
their heterogeneity includes variation in both structured and
unstructured data. Much relevant clinical information such as
drug exposure and responses is embedded in narrative clinical
text and is not immediately accessible for analysis. Additionally,
compared with randomized clinical trial data, observational
data from EMRs typically are less robust for drawing scientific
conclusions due to multiple factors such as missing data and
confounders. Hence, more effective and efficient algorithms
for data extraction and preparation are highly desirable.

5.4. Future of pharmacovigilance

– With the current advances in clinical natural language process-
ing (NLP) systems [138], much of the buried information in clin-
ical notes can be accurately extracted. As substantial portion of
the medical information accumulated are textural (e.g., EMRs,
medical case reports, research articles, patents, etc.), NLP or text
mining will be an essential part of pharmacovigilance.

– To ascertain causal relationships between drugs and adverse
events, indirect associations due to confounders must be effec-
tively identified and eliminated. In the past, causal inference in
biomedical research has primarily taken the pragmatic
approach with randomized controlled trials; however conduct-
ing clinical trials have many well-known limitations such as
ethical and practical constraints. Recently in the computational
world, advances in causal Bayesian network theory have
enabled computational modeling and learning of causal struc-
tures from observational data [139,140]. Thus, causal discovery
based on large observational datasets is a promising direction
for pharmacovigilance.

5.5. Challenges in pharmacogenomics

– The major challenge and criticism for existing pharmacoge-
nomics studies regardless of approach (i.e., candidate gene,
GWAS, or next-generation sequencing) is sample size. Evalua-
tion of genetic risk factors of any phenotype requires the
interrogation of large patient databases containing well-
characterized cases and carefully selected controls, especially
when the effect sizes of individual variants are small. Partner-
ship between healthcare systems, academia, regulatory
agencies and industry are needed to form large data networks.

– Another major challenge in identifying genetic risk factors for
ADRs is the non-uniform or non-standardized clinical pheno-
type definitions. Phenotype definition standardization is clearly
required so that well-characterized cases and controls can be
collected; this is also important in facilitating replication stud-
ies. To develop such standardization, it requires discussion
among scientists, clinicians, and regulators.
rg/10.1016/j.ymeth.2016.07.023
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5.6. Future of pharmacogenomics

– Currently, the most advanced pharmacogenomic tests imple-
mented in clinical care are only ordered at the initiation of a
treatment regimen. The genetic tests are not ordered at the
optimal time point, where the treatment regimen must be
recalled if changes are determined to be needed after retrieval
of the genetic tests results. Ideally, the genetic test result is to
guide drug selection or dosing and the delay is undesirable.
To achieve genetic-based prescription, two objectives must be
satisfied: (1) known polymorphisms associated with ADRs are
clinically relevant and can significantly reduce ADR occurrence;
(2) we need more economic and easy pharmacogenomics tests
that can be retrieved in a short period of time for clinicians.

5.7. Challenges in medication-related CDSS

– The main challenge for medication-related CDSS is over-alerting
with clinically irrelevant alerts, causing alert-fatigue for physi-
cians. Alert-fatigue may result in serious consequences because
important alerts can be missed by physicians leading to adverse
outcomes of patients. The major cause of over-alerting is that
the drug prescribing knowledgebase is often inadequate,
containing information of questionable clinical value.

5.8. Future of CDSS

– To realize the benefits of CDSS, multiple stakeholders such as
application and knowledge-base vendors, healthcare providers,
and government agencies will need to collaborate. Clinical
information system or EMR vendors need to thoughtfully
implement as many proved and effective medication-related
decision support features as possible. Alerts must be concise
and specific with sufficient information for clinicians to under-
stand the rationale for the interruption. Knowledgebase
vendors need to create clinically meaningful and pragmatic
knowledge that is evidence-based. Finally, government agencies
need to encourage organizations that have been successfully
custom building their CDSS (usually large medical centers like
academic institutions) to share knowledge and expertise.
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